25 research outputs found

    The in-flight calibration of the Hubble space telescope attitude sensors

    Get PDF
    A detailed review of the in-flight calibration of the Hubble Space Telescope attitude sensors is given. The review, which covers the period from the April 24, 1990 launch of the spacecraft until April 1991, describes the calibrations required and accuracies achieved for the four principal attitude sensing systems on the spacecraft: the magnetometers, the fixed-head star trackers, the gyroscopes, and the fine guidance sensors

    The in-flight calibration of the Hubble Space Telescope attitude sensors

    Get PDF
    A detailed review of the in-flight calibration of the Hubble Space Telescope attitude sensors is presented. The review, which covers the period from the April 24, 1990, launch of the spacecraft until the time of this writing (June 1991), describes the calibrations required and accuracies achieved for the four principal attitude sensing systems on the spacecraft: the magnetometers, the fixed head star trackers, the gyroscopes, and the fine guidance sensors (FGS's). In contrast to the other three sensor groups, the Hubble Telecope's FGS's are unique in the precision and performance levels being attempted; spacecraft control and astrometric research at the near-milliarcsecond level are the ultimate goals. FGS calibration accuracies at the 20-milliarcsecond level have already been achieved, and plans for new data acquisitions and reductions that should substantially improve these results are in progress. A summary of the basic attributes of each of the four sensor groups with respect to its usage as an attitude measuring system is presented, followed by a discussion of the calibration items of interest for that group. The calibration items are as follows: for the magnetometers, the corrections for the spacecraft's static and time-varying magnetic fields; for the fixed-head star trackers, their relative alignments and use in performing onboard attitude updates; for the gyroscopes, their scale factors, alignments, and drift rate biases; and for the FGS's, their magnifications, optical distortions, and alignments. The discussion covers the procedures used for each calibration, as well as the order of the calibrations within the general flow of orbital verification activities. It also includes a synopsis of current plans for the eventual calibration of the FGS's to achieve their near-milliarcsecond design accuracy. The conclusions include a table indicating the current and predicted ultimate accuracies for each of the calibration items

    Possible Periodic Orbit Control Maneuvers for an eLISA Mission

    Get PDF
    This paper investigates the possible application of periodic orbit control maneuvers for so-called evolved-LISA (eLISA) missions, i.e., missions for which the constellation arm lengths and mean distance from the Earth are substantially reduced. We find that for missions with arm lengths of 106 km and Earth-trailing distance ranging from approx. 12deg to 20deg over the science lifetime, the occasional use of the spacecraft micro-Newton thrusters for constellation configuration maintenance should be able to essentially eliminate constellation distortion caused by Earth-induced tidal forces at a cost to science time of only a few percent. With interior angle variation kept to approx. +/-0:1deg, the required changes in the angles between the laser beam pointing directions for the two arms from any spacecraft could be kept quite small. This would considerably simplify the apparatus necessary for changing the transmitted beam directions

    Aggregation Bias and Input-Output Regionalization: Detail or Accuracy?

    Get PDF
    Conventional wisdom holds that results from input-output (IO) models with greater sectoral detail are superior to those from models with less detail. However, there is an implicit assumption that the more detailed data are as accurate as their aggregated counterparts. In this paper, we explore the tradeoffs between sectoral detail and model accuracy in the context of IO regionalization, a practical context in which greater sectoral detail is commonly achieved via the imputation of missing values. This reality is especially apparent for increasingly smaller geographical regions where privacy concerns result in more suppressed and undisclosed data. As the number (or share) of disaggregated values that require imputation increases, the disaggregated model results will also deviate further from perfect accuracy. Is there a point at which using an aggregate model with greater certainty – relying on more reported and less imputed data – will provide results that are superior to a disaggregated model with greater potential imputation error and uncertainty? To address these questions, we design and implement simulation experiments founded on the concept of aggregation bias that enable us to evaluate the likelihoods that aggregate models would be superior to their disaggregated counterparts

    ACS Without an Attitude

    Get PDF
    The book (ACS without an Attitude) is an introduction to spacecraft attitude control systems. It is based on a series of lectures that Dr. Hallock presented in the early 2000s to members of the GSFC flight software branch, the target audience being flight software engineers (developers and testers), fairly new to the field that desire an introductory understanding of spacecraft attitude determination and control

    Precision Pointing for the Wide-Field Infrared Survey Telescope(WFIRST)

    Get PDF
    The Wide-Field Infrared Survey Telescope (WFIRST) mission, scheduled for a mid-2020's launch, is currently in its definition phase. The mission is designed to investigate essential questions in the areas of dark energy, exoplanets, and infrared astrophysics. WFIRST will use a 2.4-meter primary telescope (same size as the Hubble Space Telescope's primary mirror) and two instruments: the Wide Field Instrument (WFI) and the Coronagraph Instrument (CGI). In order to address the critical science requirements, the WFIRST mission will conduct large-scale surveys of the infrared sky, requiring both agility and precision pointing (11.6 milli-arcsec stability, 14 milli-arcsec jitter). This paper describes some of the challenges this mission profile presents to the Guidance, Navigation, and Control (GNC) subsystem, and some of the design elements chosen to accommodate those challenges. The high-galactic-latitude survey is characterized by 3-minute observations separated by slews ranging from 0.025 deg to 0.8 deg. The need for observation efficiency drives the slew and settle process to be as rapid as possible. A description of the shaped slew profile chosen to minimize excitation of structural oscillation, and the handoff from star tracker-gyro control to fine guidance sensor control is detailed. Also presented is the fine guidance sensor (FGS), which is integral with the primary instrument (WFI). The FGS is capable of tracking up to 18 guide stars, enabling robust FGS acquisition and precision pointing. To avoid excitation of observatory structural jitter, reaction wheel speeds are operationally maintained within set limits. In addition, the wheel balance law is designed to maintain 1-Hz separation between the wheel speeds to avoid reinforcing jitter excitation at any particular frequency. The wheel balance law and operational implications are described. Finally, the candidate GNC hardware suite needed to meet the requirements of the mission is presented

    Global Precipitation Measurement Mission Launch and Commissioning

    Get PDF
    During launch and early operation of the Global Precipitation Measurement (GPM) Mission, the Guidance, Navigation, and Control (GN&C) analysis team encountered four main on-orbit anomalies. These include: (1) unexpected shock from Solar Array deployment, (2) momentum buildup from the Magnetic Torquer Bars (MTBs) phasing errors, (3) transition into Safehold due to albedo induced Course Sun Sensor (CSS) anomaly, and (4) a flight software error that could cause a Safehold transition due to a Star Tracker occultation. This paper will discuss ways GN&C engineers identified the anomalies and tracked down the root causes. Flight data and GN&C on-board models will be shown to illustrate how each of these anomalies were investigated and mitigated before causing any harm to the spacecraft. On May 29, 2014, GPM was handed over to the Mission Flight Operations Team after a successful commissioning period. Currently, GPM is operating nominally on orbit, collecting meaningful scientific data that will significantly improve our understanding of the Earth's climate and water cycle

    The in-flight calibration of the Hubble Space Telescope fine guidance sensors, 2 (a success story)

    Get PDF
    The Hubble Space Telescope's fine guidance sensors (FGS's) are unique in the performance levels being attempted; spacecraft control and astrometric research with accuracies better than 3 milli-arcseconds (mas) are the ultimate goals. This paper presents a review of the in-flight calibration of the sensors, describing both the algorithms used and the results achieved to date. The work was done primarily in support of engineering operations related to spacecraft pointing and control and secondarily in support of the astrometric science calibration effort led by the Space Telescope Astrometry Team. Calibration items of principal interest are distortion, sensor magnification, and relative alignment. An initial in-flight calibration of the FGS's was performed in December 1990; this calibration has been used operationally over the past few years. Followup work demonstrated that significant, unexpected temporal variations in the calibration parameters are occurring; provided good characterization of the variation; and set the stage for a distortion calibration designed to achieve the full design accuracy for one of the FGS's. This full distortion calibration, using data acquired in January 1993, resulted in a solution having single-axis residuals with a standard deviation of 2.5 mas. Scale and alignment calibration results for all of the FGS's have been achieved commensurate with the best ground-based astrometric catalogs (root-mean-square error approximately 25 mas). A calibration monitoring program has been established to allow regular updates of the calibration parameters as needed

    In-flight scale/distortion calibration of the Hubble Space Telescope fixed-head star trackers

    Get PDF
    This paper describes an in-flight scale and distortion calibration procedure that has been developed for the Ball Aerospace Systems Division Fixed-Head Star Trackers (FHST's) used on the Hubble Space Telescope (HST). The FHST is a magnetically focused and deflected imaging sensor that is designed to track stars as faint as m(sub v) = 5.7 over an 8 degree by 8 degree field of view. Raw FHST position measurements are accurate to approximately 200 arcseconds, but this can be improved to 10-15 arcseconds by processing the raw measurements through calibration polynomials that correct for flat field, temperature intensity, and magnetic field effects. The coefficients for these polynomials were initially determined using ground test data. On HST the use of three FHST's is an integral part of the preliminary attitude update procedures required before the acquisition of guide stars for science observations. To this end, FHST-based attitude determination having single-axis errors no worse than 22 arcseconds (1 sigma) is required. In early 1991 it became evident that one of the HST FHST's was experiencing a significant change in its optical scale. By mid-1993 the size of this error had grown to a point that, if not corrected, it would correspond to a maximum position error on the order of 100 arcseconds. Subsequent investigations demonstrated that substantial, uncompensated cubic distortion effects had also developed, the maximum contribution to position errors from the cubic terms being on the order of 30 arcseconds. To ensure accurate FHST-based attitude updates, procedures have been developed to redetermine the FHST scale and distortion calibration coefficients based on in-flight data gathered during normal HST operations. These scale and distortion calibrations have proven very effective operationally, and procedures are in place to monitor FHST calibration changes on a continuing basis

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
    corecore